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INTRODUCTION 

THE BOUNDARY layer flow adjacent to continuous moving 
sheets in an otherwise quiescent ambient fluid is encountered 
in many industrial processes, such as material handling con- 
veyors and extrusion of metals and plastics, etc. The heat 
transfer characteristics of such a process have been analyzed 
by several investigators (see, e.g. Moutsoglou and Chen [I] 
and the references cited therein), but no general and useful 
correlations for Nusselt numbers have been provided. In the 
present study, the earlier results have been extended to cover 
higher values of the buoyancy parameter and a wider range 
of Prandtl numbers. In addition, new simple correlations are 
presented for the local and average Nusselt numbers. 

ANALYSIS 

The heat transfer characteristics in the classical Rhisius 
flow past a stationary surface and in the boundary layer flow 
adjacent to a continuous moving sheet in a quiescent ambient 
fluid are physically different. The latter case yields a higher 
surface heat transfer rate in comparison to the former 
because of the higher energy transport as a result of higher 
velocity in the vicinity of the moving wall. 

The conservation equations and boundary conditions for 
boundary layers along an inclined moving sheet which is 
heated isothermally (UWT) or maintained at a constant 
surface heat flux (UHF) are the same as those stated by 
Moutsoglou and Chen [I, 21 and are hence not repeated 
here. The equations are transformed from the (x, y) primitive 
variables to the (5, q) or (< ,, n) coordinate system for the 
UWT and UHF cases, respectively. In this note, the trans- 
formed equations and boundary conditions are listed for 
completeness and the correlation equations for the local and 
average Nusselt numbers are presented, respectively, for the 
UWT and UHF cases. 

Uniform wall temperature (UWT) case 
The transformed equations and boundary conditions for 

mixed convection along an isothermal, continuous moving 
sheet inclined at an angle y from the vertical are [l. 21 

.f(t,o) = 0, f’(L 0) = I, N5.0) = 1 

.f’(5, m) = 0, Q(5, ‘2) = 0 
(3) 

where the primes denote partial differentiation with respect 
to ‘I, the plus and minus signs in front of the (0 term in 
equation (1) are, respectively, for buoyancy assisting and 
opposing conditions, and the buoyancy parameter is given 

by 

t(x) = Gr,cosy/Ret. (4) 

Equations (l)(4) are valid as mentioned by Moutsoglou 
and Chen [2] for angles of inclination from the vertical. 7, 
that satisfy the condition tan y << x/S. which is equivalent to 
tan y << Re:“/q,. The local Nusselt number has the 
expression 

NuXRe;” = -t)‘(<.O) 

and the average Nusselt number 

(51 

where SL is the buoyancy parameter based on a certain length. 
L, and Nu and Re, are defined in the usual manner. 

Correlation equations for the local Nusselt number m 
mixed convection are developed along the same line as pro- 
posed by Churchill [3]. Thus, the mixed convection local 
Nusselt number, NM,, can be written as the combination of 
the local Nusselt numbers, Nu, for pure forced convection 
and NuN for pure free convection, in the form 

Nu” = Nti. + Nu” x b- N (71 

In this equation ‘n’ is a constant and the plus and minus 
signs pertain to buoyancy assisting and opposing situations, 
respectively. Equation (7) can be written in the form 

where 

Y”= 1+x _ (8) 

Y = Nu,/Nu,, X = Nu,jNr+.. (9) 

It is noted that equations (8) and (9) also apply to the average 
Nusselt number, %, if the local quantities Nu,, Nu,, and 
Nu, are replaced with the corresponding average quantities, 
Nu, NuF, and Nu,, respecttvely. 

The local Nusselt number for the pure forced convection 
in a laminar boundary layer adjacent to an isothermal, con- 
tinuous moving sheet from the present calculations for 
0. I < Pr < 100 can be expressed as 

Nu, = F,(Pr)Re: ’ (10) 

where 

F,(Pr) = 1.8865Pr” “-- 1.4447Pr’ ’ ill) 

which is accurate to within 5%. A more general local Nusselt 
number expression for pure forced convection along iso- 
thermal moving sheets was also developed by taking into 
account the limits of Pr + m and Pr + 0. For Pr + 3r3 the 
local Nusselt number can be expressed as 

NuF = 0.563Pr”’ Re: ’ (121 

whereas for Pr --t 0, the expression is given by 

Nu, = 0.7583Pr Rej ‘. (13) 

Equations (12) and (13) were derived in the following 
manner. For very high Prandtl numbers (Pr + cu) the vel- 
ocity distribution inside the thin thermal boundary layers 
can be approximated by a straight line (.f’(n) = I -C,q. 
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NOMENCLATURE 

A fi reduced stream function, (x,Y)/(v~&‘~~ 
F,(Pr), F,(Pr) functions of Prandtl number 

defined, respectively, by equations (11) and 
(17) 

9 gravitational acceleration 
G,(Pr), G,(Pr) functions of Prandtl number 

defined, respectively, by equations (27) and 
(33) 

Gr, local Grashof number for UWT, 
sB(T,-- ~c‘Jx’lvZ 

Gr: local Grashof number for UHF, 
g&wx4/kv2 

Gr, , GrZ Grashof number based on L for UWT and 
UHF, respectively 

h,li local and average heat transfer coefficients 
k thermal conductivity of fluid 
L a certain length of the moving sheet 
n constant exponent, equations (7) and (8) 
Nz+, NuNI Nu, local Nusselt numbers for pure 

forced, pure free, and mixed convection, 
hx/k - _-- 

Nu,. Nu,. Nu averaee Nusselt numbers for nure 

Rex 
ReL 
T 

T, 
TCO 
u, v 

UO 
X*Y 

local Reynolds number, u&v 
Reynolds number based on L, u,L/v 
fluid temperature 
wall temperature 
free stream temperature 
streamwise and normal velocity 
components 
velocity of the moving sheet 
axial and normal coordinates. 

Greek symbols 
B volumetric coefficient of thermal 

expansion 

; 
angle of inclination from the vertical 
boundary layer thickness 

* stream function 
rl dimensionless pseudo-similarity variable 

Y(uO/vx)“z 

1; 
kinematic viscosity 
dimensionless temperature for UWT, 
(T- TJ(Tw- Tmi 

b dimensionless temoerature for UHF. 
.I 1.I 

Pr 

4w 

forced, p;e free, and mixed co&ection, 
tiL/k 
Prandtl number 
local surface heat flux 

’ 
5,5, 

V- TmVW2/(wl~) 
buoyancy parameter for UWT and UHF 
defined, respectively, by equations (4) 
and (23). 

where C, was found to be 0.4437). This approximation along 
with r = 0 was introduced into the energy equation (2) and 
the resulting expression for -0’(O) was numerically evalu- 
ated to obtain the local heat transfer results for forced con- 
vection at very high Prandtl numbers. The best fit for these 
results yielded equation (12) which shows that for a con- 
tinuous moving sheet the local Nusselt number varies as 
Pr”*, as opposed to the Pr”’ variation for a stationary 
isothermal surface, when Pr + co. Similarly, for very low 
Prandtl numbers (Pr -B 0), the velocity distribution in the 
large thermal boundary layer can be approximated by the 
free stream velocity, namely, f’(q) = 0 or f(q) = C2, a con- 
stant. This approximation yields a closed form expression 
for the local Nusselt number as Nu, Re; “* = C2 Pr, with 
C2 = 0.7583, as represented by equation (13). 

Thus for any given Prandtl number, a combination of 
equations (12) and (13) will provide an expression for the 
local Nusselt number in forced convection. This leads to the 
following expression : 

Nz+ = F:(Pr)Re:” (14) 

where 

F:(Pr) = O.S63Pr”* [I +0.712(0.02/Pr)“*]-3 (15) 

which is a more general form than that given by equation 
(IO). Equation (15) was checked to give results which are 
accurate to within 10% in the Prandtl number range 
0.01 Q Pr Q 03. For 0.1 < Pr < 100, it agrees to within 7% 
of the calculated results and is thus not as accurate as equa- 
tion (11). 

The local Nusselt number expression for free convection 
along an inclined plate is given by 

Nz+ = FZ(Pr)(GrXcos y) “4 (16) 

F,(Pr) = 0.75Pr”‘[2.5(1 +2Pr”2+2Pr)]-“4. (17) 

It is noted that equation (16) is a modified form of that for 
a vertical plate, with F,(Pr) given by Ede [4], by simply 
replacing Gr, with Gr, cos y and that pure free convection 
corresponds to the case when both the plate and the ambient 

fluid are at rest simultaneously. The local mixed convection 
Nusselt number for an inclined, isothermal, continuous mov- 
ing sheet can then be expressed according to equation (8) as 
follows : 

Nu, Re; “*/F,(Pr) 

= { 1 + [F,(Pr)(Gr,cosy/Re:)“4/F,(Pr)j”)””. (18) 

Similarly, the corresponding average mixed convection Nus- 
selt number can be correlated as 

% ReL “*/2F,(Pr) 

= { 1 f [2F*(Pr)(Gr,cos y/Re2)“4/3F,(Pr)l”}““. (19) 

Equations (18) and (19) have the form Y = (1 k X”) ‘I”. As 
will be seen later, n = 3 provides the best correlation. Similar 
correlations as given by equations (18) and (19) with F, (Pr) 
replaced by F:(Pr), can be obtained by using equations (14) 
and (16). 

Uniform surface heatJlux (UHF) case 
The transformed equations and boundary conditions for 

mixed convection in a laminar boundary layer along an 
inclined, continuous moving sheet subjected to a uniform 
surface heat flux are given by [ 1, 21 

fi(rl>o) = 0, f,‘(5,30) = 1, dJ’(r*,o) = -1 
fi cr,> co) = 0, 4tr,> a) = 0 

(22) 

where the primes again denote partial differentiation with 
respect to q and the buoyancy parameter is given by 

r,(x) = Gr,* cos y/Re:“. (23) 

As for the UWT case, equations (20)-(22) are valid for 
inclined moving sheets, with inclination angle, y, that satisfies 
tan y << Rei’*/qs. The local and average Nusselt numbers are 
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given, respectively, by 

Nu,Re;” = l/4(5,.0) 

and 

(24) 

where [, ,_ is 5, based on a certain length, L. 
Correlations for the UHF case can be expressed in the 

same form as that of equations (7)-(9). For pure forced 
convection under the UHF case, the local Nusselt number 
for the moving sheet can be expressed as 

NI+ = G,(Pr)Re:” (26) 

where from the present calculations for 0.1 < Pr < 100 

G,(Pr) = 2.8452Pr’“‘2-2.0947Pr”Z (27) 

which has an error of less than 4%. As in the UWT case, a 
more general expression for the local Nusselt number in 
forced convection along continuous moving sheets subjected 
to a uniform surface heat flux was developed. In the limit of 
Pr -+ co the local Nusselt number can be expressed by 

Nu, Re; “* = 0.882Pr’:’ (28) 

whereas for Pr + 0 the expression is given by 

NM, Re; ‘*’ = 1.4275Pr. (29) 

Thus, for any Prandtl number the local Nusselt number can 
be expressed by 

NuF = G:(Pr)Rei” (30) 

where 

G:(Pr) = 0.882Pr”‘[l +0.77(0.012/Pr)“2]~-3. (31) 

The validity of equation (3 1) was checked for 0.01 < Pr < co 
and found to give results that are accurate to within 10% of 
the numerically computed values. For 0.1 < Pr < 100, it is 
accurate to 8% and is not as good as equation (27). The local 
Nusselt number for free convection is given by the correlation 

Nu,, = G,(Pr)(Gr,’ ~0s~)~‘~ (32) 

where 

G,(Pr) = PrZ~‘[4+9Pr’;*+ lOPr]-“’ (33) 

which is derived from that for a vertical plate given by Fujii 

and Fujii [5]. The local and average mixed convection Nusselt 
number for the inclined moving sheets can then be written 
according to equation (8) as follows : 

Nu, Re; ’ ‘/G, (Pr) 

: { 1 +[G,(Pr)(Gr,cos:~/Re~,‘)“5iG,(Pr)j”)’ ’ (34) 

and 

Nu Re, ’ ‘/2G, (Pr) 

= (I jL[5Gz(Pr)(GrLcosy/Re:“)‘~i!8G,(Pr)j”}’” (35) 

Again, equations (34) and (35) have the form Y = (1 +X”)““. 
It will also be seen later that n = 3 gives the best correlation. 
It should be noted that similar expressions for the local and 
average Nusselt numbers as given by equations (34) and (35), 
with G,(Pr) replaced by G:(Pr), can be developed when use 
is made of equations (31) and (32). 

RESULTS AND DISCUSSION 

The correlation equations (18) and (34) along with cal- 
culated results for Prandtl numbers of 0.7, 7 and 100 are 
presented in the Y vs X form for both the buoyancy assisting 
and opposing flow conditions, respectively, in Figs. 1 and 2 
for the UWT and UHF cases. Computations were extended 
to higher values of the buoyancy parameter than the work 
of Moutsoglou and Chen [I] and to cover an additional 
Prandtl number of 100. As is evident from the figures, an 
exponent value of n = 3 correlates very well (with errors of 
less than 5%) for both the heating conditions and for both 
the buoyancy assisting and opposing situations. The average 
Nusselt numbers as calculated by equations (6) and (25) for 
the UWT and UHF cases, respectively, were then correlated 
with the respective equations (19) and (35), and good agree- 
ment was found to exist between the calculated and the 
correlated results. Thus, separate figures for the average Nus- 
selt number correlations are not presented. Instead, Figs. 1 
and 2 may be utilized for this purpose provided the Y and X 
coordinates in these figures are represented by those given in 
equations (19) and (35). 

CONCLUSION 

Simple and accurate correlation equations have been 
developed and presented for estimating the local and average 
Nusselt numbers in mixed convection adjacent to inclined. 
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FIG. 1. A comparison between the predicted and correlated local Nusselt numbers for the UWT case. 
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FIG. 2. A comparison between the predicted and correlated local Nusselt numbers for the UHF case. 

continuous moving sheets the surfaces of which are main- 
tained either at a constant temperature or at a constant heat 
flux. The correlations presented for a Prandtl number range 
of 0.7 Q Pr d 100 and for both buoyancy assisting and 
opposing flow conditions agree very well with the analytically 
predicted values. 
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Correction de longueur d’impulsion pour la mesure de la 
diffusivitb thermique par mkthode flash 

A. DEGIOVANNI 

LEMTA, Cole des Mines, Part de Saurupt, 54042 Nancy Cedex, France 

(Rep le 5 Fbbrier 1987) 

II s’agit d’ttendre le r&ultat de Axumi et Takahashi [I] forme de l’impulsion avec 
obtenu dans le cas d’un echantillon suppose isole (Parker et 
al. [2]), au cas general avec pcrtes thermiques. La solution m 

analytique de l’bquation de diffusion permettant de calculer cp(t)dt = 1 
0 

la temperature sur la face opposee a l’impulsion de flux est 
s 

don& par le prod& de convolution suivant et Q l’energie de l’impulsion. 
De facon g&&ale, la solution I l’impulsion de Dirac en 

T(t) = Q rp(z)Td(t-t) dr presence de p&es s’ecrit sous la forme dune double serie [3] 

oti T,(t) est la solution pour une impulsion de Dirac, q(t) la TA(t) = ~&hexP(--v,t). 
n P 


